skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jindra, Michael A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free fatty acid (FFA) production in bacteria is a key target for metabolic engineering. The knockout of the acyl-ACP synthetase (AAS) prevents reincorporation of FFA into the fatty acid biosynthetic cycle and is widely used to enhance their secretion. However, the role of AAS in membrane lipid remodeling under environmental stress, such as altered temperature, remains poorly understood. In cyanobacteria, temperature shifts are known to affect fatty acid desaturation and membrane fluidity, yet it is unclear whether AAS contributes to these adaptive responses through re-esterification of membrane-released acyl chains. We elucidated unique aspects of fatty acid metabolism in response to temperature changes in biotechnologically relevant microbes with the development of an efficient method for quantifying acyl-ACP intermediates using anion exchange chromatography (AEX). In Escherichia coli, which performs desaturation during fatty acid biosynthesis, we detected saturated and unsaturated acyl-ACPs that confirm biosynthetic pathway operation. In the cyanobacteria, Picosynechococcus sp. PCC 7002 and the Δaas strain, changes between two temperatures were interpreted with support from proteomic and lipidomic analyses and indicated that the AAS is tied to membrane lipid remodeling. Further, polyunsaturated acyl-ACPs were detected in the Δaas strain, which was unexpected because fatty acid synthesis does not produce polyunsaturates in cyanobacteria, suggesting the presence of alternative acyl-activating enzymes or unknown acyl-ACP desaturases. This study highlights the possible link between acyl chain recycling and lipid remodeling in cyanobacteria and demonstrates the utility of AEX-based acyl-ACP profiling in dissecting fatty acid metabolism. 
    more » « less
  2. Abstract Microbial lipid metabolism is an attractive route for producing oleochemicals. The predominant strategy centers on heterologous thioesterases to synthesize desired chain-length fatty acids. To convert acids to oleochemicals (e.g., fatty alcohols, ketones), the narrowed fatty acid pool needs to be reactivated as coenzyme A thioesters at cost of one ATP per reactivation - an expense that could be saved if the acyl-chain was directly transferred from ACP- to CoA-thioester. Here, we demonstrate such an alternative acyl-transferase strategy by heterologous expression of PhaG, an enzyme first identified inPseudomonads, that transfers 3-hydroxy acyl-chains between acyl-carrier protein and coenzyme A thioester forms for creating polyhydroxyalkanoate monomers. We use it to create a pool of acyl-CoA’s that can be redirected to oleochemical products. Through bioprospecting, mutagenesis, and metabolic engineering, we develop three strains ofEscherichia colicapable of producing over 1 g/L of medium-chain free fatty acids, fatty alcohols, and methyl ketones. 
    more » « less